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Abstract

Motivation:

DNA segmentation, i.e. the partitioning of DNA in compositionally homogeneous
segments, is a basic task in bioinformatics. Different algorithms have been proposed for
various partitioning criteria such as GC content, local ancestry in population genetics,
or copy number variation. A critical component of any such method is the choice of
an appropriate number of segments. Some methods use model selection criteria, and
do not provide a suitable error control. Other methods that are based on simulating a
statistic under a null model provide suitable error control only if the correct null model
is chosen.

Results:

Here, we focus on partitioning with respect to GC content and propose a new ap-
proach that provides statistical error control: as in statistical hypothesis testing, it
guarantees with a user specified probability 1−α that the number of identified segments
does not exceed the number of actually present segments. The method is based on a
statistical multiscale criterion, rendering this as segmentation method which searches
segments of any length (on all scales), simultaneously. It is also very accurate in lo-
calizing segments: under bench-mark scenarios, our approach leads to a segmentation
that is more accurate than the approaches discussed in the comparative review of [18].
In our real data examples, we find segments that often correspond well to features
taken from standard UCSC genome annotation tracks.

Availability:

Our method is implemented in function smuceR of the R-package stepR, available
from http://www.stochastik.math.uni-goettingen.de/smuce.
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1. Introduction

It has been observed a long time ago [30] that DNA sequences are not composed
homogeneously and that bases fluctuate in their frequency. These inhomogeneities
often have an evolutionary or a functional interpretation, and can be relevant for the
subsequent analysis of sequence data. Since it correlates with many features of interest,
the GC content, i.e. the relative frequency of the bases G and C, is one of the most
commonly studied sequence properties.

Large scale regions, typically 300kb [5], of approximately homogeneous GC content
have been called isochores. In view of the somewhat vague notion of “approximate
homogeneity”, and conceptual criticism in studies such as [13], or [18], there is less
interest in isochores nowadays. There is no doubt about variation in GC content along
genomes however, and search is done instead for domains of any length exhibiting
distinct local GC content; see for instance [19]. Several factors can influence the GC
content of a region. At larger scales, it correlates with the density of genes, with gene
rich regions typically exhibiting an elevated GC content compared to regions of low
gene density. At smaller scales, there is fluctuation in GC content for instance due to
repetitive elements and GpC islands. The GC content is also known to vary between
exons and introns. Indeed, especially for long introns, their lower GC content seems to
play a role in splice site recognition [1]. There is also a correlation between GC content
and the local recombination rate [24]. For a further discussion of features correlated
to the GC content, see [23].

In gene expression studies, regions of homogeneous GC content are of interest as the
GC content of a region affects the number of reads mapped to this region. For DNA
and RNA-seq experiments with the Illumina Genome Analyzer platform, this has been
for instance investigated in [2] and [29].

Segmentation algorithms aim to partition a given DNA sequence into stretches that
are homogeneous in their composition, but differ from neighboring segments. The clas-
sical approach of using moving windows is very simple and available for instance as
an option with the UCSC and Ensembl genome browsers. It has some disadvantages,
however. For instance, the choice of the window size is difficult as it defines implicitly a
fixed scale at which segments primarily will be detected. Further, the involved smooth-
ing blurs abrupt changes. Without additional statistical criteria, the method also does
not tell us whether differences between neighboring windows are statistically signif-
icant. Therefore several more sophisticated approaches have been proposed. These
methods include hidden Markov Models ( [10,11]) and walking Markov Models ( [20]).
There are also change point methods available, see for instance [8]. A Bayesian ap-
proach that relies on the Gibbs sampler has been proposed by [26]. An older approach
based on information criteria can be found in [28]. Furthermore, recently developed
methods based on information criteria have been shown to perform particularly well,
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see [18], [19]. A review of segmentation methods can be found in [7], and for a more
recent comparative evaluation of the more popular approaches see [18].

In this paper we focus on binary segmentation, where the four letter alphabet of a
DNA sequence is converted into a two letter code. For GC content, we set the response
to be “1” for G or C at a position, and zero for A/T; we use Yi to denote the response
at position i, and summarize the responses for a sequence of length n by

Y = (Y1, Y2, . . . , Yn). (1)

We model the responses Yi to be independent and Bernoulli Bin(1, πi) distributed, and
also assume that there is a partition 0 = τ0 < τ1 < · · · < τK = n into K segments on
which the πi are piecewise constant, i.e. πi = pj for i ∈ Ij. Here, Ij := (τj−1, τj] denotes
the j’th segment with response probability pj for 1 ≤ j ≤ K while K is unknown and
can be arbitrarily large.

A segmentation algorithm provides estimates K̂ for the number of segments, for the
internal segment boundaries,

0 = τ̂0 < τ̂1 < τ̂2 < · · · < τ̂K̂−1 < τ̂K̂ = n, (2)

and for the response probabilities, p̂j, on the estimated segments Îj := (τ̂j−1, τ̂j ].

In the following we will identify a segmentation with (p, I), where p = (p1, . . . , pK)
and I = (I1, . . . , IK).

Our proposed algorithm provides a parsimonious estimate K̂ for K: K̂ will not
exceed the actual number of segments K, except for a small user specified error prob-
ability α; as a default value, we suggest α = 5%, the error probability also chosen in
our simulations and data analyses. Relaxing this significance level to a larger value,
α = 20% say, will typically lead to more identified segments, but at the cost of statis-
tical accuracy.

2. Method

Our proposed multiscale segmentation provides estimates for the number of segments
and their boundaries at the same time. We employ a certain multiscale statistic which
will ensure that the estimator fits the data well on all segments simultaneously, i.e.
the number of segments is not underestimated with high probability. This estimator
is based on [21] who proposed a general statistical multiscale change-point estimator
(SMUCE) for exponential family models. Exponential families include many classes of
well known distributions, such as the Gaussian (normal) class, the Poisson class or the
Bernoulli class, which is of particular interest for this paper.

In the Gaussian setting, a related estimator has also been suggested in [15]. Fore-
runners of SMUCE are based on a penalized likelihood with a penalty that depends on
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the number of jumps, see e.g. [6,8,32,33] and the introduction in [21] for a brief survey.
The underlying multiscale statistic is based on the work of [16], see also [17] and [31].
For a general description of the approach underlying the present work, its statistical
interpretation, statistical optimality, and theoretical results we again refer to [21]. To
ease understanding, in the following we elaborate in greater details on the case of binary
Bernoulli observations with success probabilities given as piecewise constant segments,
as this model underlies the methodology for the segmentation problem at hand. In con-
trast to other approaches such as Hidden Markov Models, we require neither explicit
nor implicit distributional assumptions on the segments and their lengths.

Let ℓ(Yi, πi) denote the likelihood of Yi under the parameter πi, i.e. ℓ(Yi, πi) = πi

if Yi = 1 and ℓ(Yi, πi) = 1 − πi else. We then define for a fixed interval (i, j] with
0 ≤ i < j ≤ n the local likelihood ratio statistic

T(i,j](p0) = log

(

max
p̃0∈[0,1]

j
∏

l=i+1

ℓ(Yl, p̃0)

ℓ(Yl, p0)

)

. (3)

Roughly, this statistic indicates how well the data on the sub-interval (i, j] are de-
scribed by the constant response probability p0 ∈ [0, 1] of some segment under consid-
eration as opposed to choosing some p̃0 ∈ [0, 1] freely for that sub-interval.

As a goodness-of-fit measure for the segmentation (p, I) we consider the scale-
calibrated multiresolution statistic

Tn(p, I) = max
1≤l≤K

max
(i,j]⊆Il

(

√

2T(i,j](pl)−

√

2 log

(

e · n

j − i

)

)

. (4)

(Here “e” denotes Euler’s number.) This statistic may be interpreted as follows: for
all segments Il in I the response probability is assumed to be constant, and for ev-
ery interval (i, j] within such a segment, Tn(p, I) measures whether the data are well
described by the constant response probability pl on that interval. It thus checks the
quality of fit on all scales simultaneously, hence the name. Note that the log-penalty
term depends on the length j− i of the interval that is currently checked for deviations
from the model. Indeed, it takes the number of disjoint intervals of the considered
length into account, thereby adjusting for multiple testing. For our final estimate we
determine

(1) the minimal number of segments K̂, such that there exists a segmentation (p̂, Î)

with K̂ segments satisfying the multiresolution constraint Tn(p̂, Î) ≤ q for some
pre-determined significance threshold q, and

(2) the segmentation (p̂, Î) with maximal likelihood among all segmentation having

K̂ segments and satisfying the multiresolution constraint.
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To be more precise, let CK denote the set of segmentation with K segments. Then,
our estimate in the second step is

(p̂, Î) = argmax
(p,I)∈C

K̂
,Tn(p,I)≤q

ℓ(Y ; p, I), (5)

where argmax denotes a position (p̂, Î) at which the maximum is obtained, and

ℓ(Y ; p, I) denotes the likelihood of all data, if the segmentation (p, I) with K̂ segments
were true, i.e.

ℓ(Y ; p, I) =
∏

1≤l≤K̂

∏

i∈Il

ℓ(Yi, pl). (6)

Following [21], the general class of such estimators in exponential families has been
denoted as SMUCE (Statistical Multiscale Change point Estimator). We adopt this
terminology and will denote the estimator in (5) for the Bernoulli and binomial case
as B-SMUCE.

The threshold parameter q determines the parsimony of the estimator, the larger q
the fewer segments will be included into B-SMUCE. Hence, the choice of q is crucial.
A statistically attractive feature of B-SMUCE is that q can be chosen as the (1− α)-
quantile of the distribution of Tn(p, I) under the hypothesis that (p, I) is the true
model. In [21] it has been proven that this choice ensures that the number of segments
is not overestimated with probability at least 1− α.

To be a little more precise, in [21] Theorem 2.1 was shown under some mild techni-
cal assumptions that for any (p, I) the asymptotic distribution of the multiresolution
statistic Tn(p, I) can be bounded by the asymptotic distribution of the statistic for a
signal with only one segment. Moreover, the latter distribution converges to the limit
distribution of (4) for the case of i.i.d. zero-mean Gaussian observations. Therefore,
we may (and we do in the following) simply use Monte Carlo simulations with i.i.d.
zero-mean Gaussian data to determine bounds on the quantiles of the distribution of
Tn(p, I). In fact, in simulations we found the approximate quantiles so obtained to be
rather conservative (i.e. the preassigned error probability α was not exceeded) even
for small sample sizes. This adds support to the the basic inequality

P (K̂ > K) ≤ P (Tn(p, I) > q) ≤ α (7)

in Section 1.2. of (Frick et al. 2013) which renders SMUCE to be a method which sta-
tistically controls the error to overestimate the number of segments in the binary case,
i.e. it provides the statistical validity of B-SMUCE in the above sense (7). The other
way around, Theorem 2.2 in [21] provides an exponential deviation bound for the error
to underestimate the true number of segments which explicitly depends on the smallest
segment length and signal strength. Under prior information on these quantities these
two inequalities together even allow to give a guarantee for the probability P (K̂ = K)
of specifying the number of segments correctly. Moreover, in the Gaussian case, it can
be shown that SMUCE attains optimal detection rates (and even constants) over a
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large range of segment lengths, see [21], Theorems 2.6, 2.7. Our simulations suggest a
similar performance in the binary/binomial case, although we do not have a rigorous
proof of this statement.

2.1. Details of the Algorithm

We follow [21] and use a pruned version of dynamic programming to compute our es-

timated segmentation Î and levels p̂. This is possible since our multiresolution statistic
Tn considers only subintervals of the candidate segments of constant response proba-
bility. For related ideas, where dynamic programming has been used for other segmen-
tation estimators, see e.g. [22], [6], [15] and in particular for pruning [27]. To describe
the algorithm for computing B-SMUCE, we need the following notation, identifying
a segmentation with (p, I) again: for an interval (i, j] we define the local costs of a
response probability p0 ∈ [0, 1] as

c(i,j](p0) =

{

−
∏j

l=i+1 ℓ(Yl, p0) if T(i,j](p0) ≤ q,

∞ otherwise.
(8)

Let c∗(i,j] = minp0∈[0,1] c(i,j](p0) denote the minimal costs on (i, j] for a constant response

probability under the multiresolution constraint, while p(i,j] = argminp0∈[0,1] c(i,j](p0)
denotes the corresponding optimal estimate.

Let us for the moment only consider the observations Y1, . . . , Yi for fixed 1 ≤ i ≤ n,
and denote by c∗i,K the optimal overall costs on (0, i] using K segments, i.e.

c∗i,K = argmax
(p,I)∈CK,i,Ti(p,I)≤q

∏

1≤l≤K

∏

j∈Il

ℓ(Yj, pl), (9)

cf. (5), where CK,i denotes the set of segmentation of (0, i] with K segments; if no
segmentation (p, I) ∈ CK,i fulfills the multiresolution constraint Ti(p, I) ≤ q, we let
c∗i,K =∞.

The algorithm for B-SMUCE is then based on the observation that for K > 0

c∗i,K = min
1≤l≤i

(

c∗l,K−1 + c∗(l,i]
)

. (10)

In dynamic programming this is called the Bellman equation; it is the main ingredient
for an efficient implementation, see line 11 in Algorithm 1.
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Algorithm 1 Dynamic Programming Algorithm for B-SMUCE

1: K̂ ← 0, Î0 ← ∅, p̂0 ← ∅, i← 1
2: while i ≤ n do

3: if K̂ = 0 then

4: l∗ ← 0
5: c∗i,0 ← c∗(0,i]
6: else

7: for l = i− 1, . . . , 1 do

8: if c(l,i] =∞ then

9: goto 14
10: else

11: cli ← c∗
l,K̂−1

+ c∗(l,i]
12: end if

13: end for

14: l∗ ← argminl≤j<i c
j
i

15: c∗
i,K̂
← cl

∗

i

16: end if

17: if c∗
i,K̂

=∞ then

18: K̂ ← K̂ + 1
19: goto 3
20: end if

21: Îi ←
(

Îl∗ , (l
∗, i]
)

22: p̂i ←
(

p̂l∗ , p(l∗,i]
)

23: end while

24: return K̂, În, p̂n

Note that we introduced two rules that permit for early stopping of loops: if c∗(l,i] =

∞, i.e. if the hypothesis of constancy on (l, i] is rejected, then consequently this also
happens on any larger interval, i.e. for any smaller l; this justifies lines 8–9. Similarly,
if K segments are insufficient to fulfill the multiresolution constraint on (0, i] then a
fortiori so for any larger i, whence lines 17–20. To the best of our knowledge, these
shortcuts that are possible due to the specific structure of the multiscale constraint,
have not been used so far. Additional improvements were used in our implementation;
these, however, are rather technical and thus omitted from the present paper.

3. Results

We evaluated our segmentation approach both on simulated data and on data taken
from the human genome and the long known λ-phage. In our simulations, we used the
benchmark scenarios proposed in [18].
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Since an extensive comparison of popular DNA segmentation algorithms under these
benchmark scenarios is already available in [18], we provide a comparison of our ap-
proach with the method that performed best in [18], namely the one based on the
Jensen-Shannon divergence. This recursive approach (called DJS) splits one of the
current segments in each step. This is done by adding a new break point such that the
improvement in Jensen-Shannon divergence is maximized. The algorithm stops when
the improvement does not reach a threshold value obtained via simulations. Here, we
used the Matlab implementation Djsegmentation.m of the algorithm which is publicly
available as part of ISOPLOTTER 2.4 (http://code.google.com/p/isoplotter/). There
5.8 × 10−5 is taken as threshold, a value obtained from simulating long (1Mb) homo-
geneous sequences. While this value seems to work well for the considered benchmark
scenarios and might also be useful to prevent false positives when searching for long
homogeneous sequences, it might be less suitable for balancing false positives and false
negatives under other scenarios. Therefore a modified version (called ISOPLOTTER)
of DJS has been proposed briefly after [19] that uses critical values dependent both
on the segment length and the standard deviation of GC content. We therefore also
report on the performance of ISOPLOTTER 2.4 (again under the default parameter
settings), and provide detailed results in the supplement.

To facilitate comparison and to accelerate the computations for longer sequences, we
binned the data and applied our algorithm to the resulting binomial frequencies. We
choose the bin size equal to 32 which is the default value with the DJS and IsoPlotter
software, and has also been used in [18]. While binning the data clearly improves the
speed, it should be noted that it is not essential for the algorithm to work.

The first scenario considered there involves sequences consisting of fixed-size homo-
geneous domains. Although not realistic in practice, this setup has been proposed
by [18] as a minimum standard: a criterion that does not perform well on such data
cannot be expected to perform well under more complex settings. The second scenario
consists of sequences with domains of random length generated according to a power-
law distribution. These sequences are reported to mimic mammalian genomes well,
see [12].

3.1. Performance measures

We measured performance both by a qualitative criterion proposed by [18], and by
a new quantitative criterion. For the qualitative criterion, we classify an identified
segment as true positive, if both segment boundaries are identified correctly within an
error margin of 5000 bases, or 5% of the segment length, whichever is smaller. Thus an
identified segment is considered to be a false positive, unless both detected boundaries
were within 5000 bases (or 5%) from the boundaries of a true segment. Similarly, actual
segments were taken as false negatives, if they were not detected correctly within the
permitted tolerance. Let now tp, fp, and fn denote the number of true positives, false
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positives and false negatives respectively. Following [18], we define a sensitivity rate as

rs :=
tp

tp+ fn
, (11)

and a precision rate as

rp :=
tp

tp+ fp
. (12)

We investigate the performance of our proposed approach based on these criteria.

Furthermore, we defined two quantitative criteria that better reflect the accuracy of
detecting segment boundaries. We denote them by false negative sensitive localization
error (FNSLE) and false positive sensitive localization error (FPSLE). To introduce
the FNSLE, consider a true segment Ij := (τj−1, τj], and let mj =

τj−1+τj
2

denote
the midpoint of the segment. We define the best matching estimated segment as the
segment Îl = (τ̂l−1, τ̂l] with mj ∈ Îl. The FNSLE for segment Ij is then defined as the
mean distance

e
(FNSL)
j =

1

2

(

|τj−1 − τ̂l−1|+ |τj − τ̂l|
)

(13)

between true and estimated boundaries.

The overall FNSLE is then defined as the mean FNSLE taken over all true segments

e(FNSL) :=
1

K

K
∑

j=1

e
(FNSL)
j . (14)

Analogously, the FPS localization error can be defined by measuring how closely an
estimated segment matches to one of the true segments. By starting with an estimated
segment Îl and its midpoint m̂l we look for the true segment satisfying m̂l ∈ Ij. With

analogously defined errors e
(FPSL)
l , we call

e(FPSL) :=
1

K̂

K̂
∑

l=1

e
(FPSL)
l . (15)

the overall FPSLE.

These measures for the error may be interpreted as follows: assume the estimated
segmentation agrees with the true segmentation in the number of segments, and that
all boundaries have been determined with an error smaller than half the length of
each neighboring segment. Then FPSLE and FNSLE agree: they essentially give the
average distance between true and estimated boundaries. These error measures behave
differently however, if the numbers of true and detected segments do not coincide:
assume that the estimated segmentation is the true segmentation except that it has
incorrectly split one true segment into two estimated segments. Then the FNSLE
increases by the length of that true segment minus the length of the longer estimated
segment divided by 2K, i.e. a spurious split is treated like an error in localizing that
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boundary. The FPSLE, however, will get rather large, as the length of that true
segment divided by 2K̂ gets added. Similarly, if a true boundary is not detected, the
FNSLE will be larger.

3.2. Simulations

3.2.1. Segments of Equal Length

We first implemented scenario I of [18]. Thus we simulated sequences that consist
of 10 segments of equal length. We considered the following eight different segment
lengths: 10kb, 50kb, 100kb, 200kb, 300kb, 500kb, 1Mb, 5Mb. Thus the longest sequences
had total length 50Mb. For each sequence, we selected a global probability p̄(t) for the
response “1” at a position according to a uniform distribution on [0.1, 0.9]. Then
we randomly modified this probability for each sequence segment j by taking pj =
p̄(t) + σZj. Here Zj denotes a standard normal random number, and σ was chosen
from {0, 0.025, 0.05, 0.075, 0.1}. The pj were conditioned to lie within [0, 1], i.e. if pj
did not turn out to be a proper probability, a new random number was generated. The
individual observations Yi within a given segment Ij were then chosen as independent
Bernoulli random variables with expected value pj.

We simulated 100 sequences for each combination of segment length and heterogene-
ity σ of the segment specific response probabilities.

In [18], a detection threshold was introduced, and neighboring true segments for
which the value of pj differed by less than this threshold have been merged and con-
sidered as a single segment in the subsequent performance analysis. We did not use
such a threshold, however, since we did not want to penalize high sensitivity. Indeed,
a correct detection of two neighboring segments with unequal but too similar levels pj
would be counted as an error, if such a detection threshold was used.

The average sensitivity and precision rates of B-SMUCE and the method based
on the Jensen-Shannon entropy (DJS) are displayed in Figures 1 and 2 respectively.
Especially for shorter segments, B-SMUCE performs better than DJS, with higher
sensitivity and precision. IsoPlotter performed worse than DJS under the considered
scenarios and gave up to 40 segments on average for the very long sequences. B-
SMUCE is able to detect also short segments while controlling the number of spuriously
detected segments. Notice however that in the case of a homogeneous sequence without
partitioning into segments (σ = 0), DJS always obtained the correct answer whereas
B-SMUCE sometimes introduced spurious segment boundaries. This is to be expected,
as the error of introducing spurious boundaries has been set to α = 5% under such
a model. Furthermore, under all scenarios, too many boundaries were estimated by
B-SMUCE in less than 5% of the simulations, as predicted. We consider the ability to
control this error to be a particular strength of our approach.
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Figure 1. Average sensitivity rate as defined in (11) for DJS (◦) and
B-SMUCE (×). Results are based on simulations under scenario I (seg-
ments of equal length) for several values of σ. The sensitivity obtained
with the multiresolution criterion tends to be higher. At the simulated
segment lengths, 95% confidence intervals are given as error bars.
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Figure 2. Average precision rate, as defined in (12) for DJS (◦) and
B-SMUCE (×). Results are based on simulations under scenario I (seg-
ments of equal length) for several values of σ. The precision rate obtained
with the multiresolution criterion tends to be higher. At the simulated
segment lengths, 95% confidence intervals are given as error bars.

Figures 3 and 4 show the average FNSLE (14) and FPS localization errors (15) that
measure the accuracy of the segment detection. For these quantitative criteria, we
only consider sequences that are non-homogeneous (σ > 0). Again, B-SMUCE shows
better performance, leading to smaller errors on average. With increasing heterogeneity
σ there will be typically larger differences between neighboring segments, and thus
smaller errors. The graphs also seem to indicate that both FPSLE and FNSLE tend
to get larger with increasing sequence lengths. A closer inspection reveals that this is
mostly caused by outliers, as the median accuracy of detection stays nearly the same for
all segment lengths. These outliers occur when a segment is either missed or detected
incorrectly, and such events lead to larger errors when the segments are longer.
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Table 1. Sensitivity rate and precision rate under scenario 2 for the
Jensen-Shannon divergence method (DJS) and B-SMUCE. Long and
short segments were generated from a power law distribution and the
total sequence length was n = 106. We provide averages (and in paren-
theses standard errors) over 100 simulation runs.

DJS B-SMUCE
avg. true number 27.51 (1.90) 27.51 (1.90)
avg. number of true pos. 23.26 (1.69) 24.68 (1.80)
avg. number of false pos. 2.51 (0.20) 1.60 (0.14)
avg. number of false neg. 4.25 (0.37) 2.83 (0.24)
avg. sensitivity 0.83 (0.016) 0.87 (0.015)
avg. precision 0.88 (0.013) 0.92 (0.013)

3.2.2. Segments According to Power Law

In our second simulation setup, we generated 100 sequences consisting of segments
with different lengths. As in [18], we chose the segment lengths according to a power
law distribution:

p(x) = Cx−a
1[x > x0], (16)

with a = 1.55 and x0 = 10000. The parameter a was chosen to mimic segment lengths
for mammalian, in particular human, DNA sequences; see [18], [12], [13]. Notice that
the minimal segment length x0 = 10000 was introduced to avoid very short segments
that are difficult to detect. The total sequence length was taken to be n = 106.
For even numbered segments, we selected the response probability pj according to a
uniform distribution on [0.6, 1], whereas for odd segments we took pj uniformly from
pj ∈ [0, 0.4].

Qualitatively, it turns out that B-SMUCE performs better than the Jensen-Shannon
entropy criterion DJS both in terms of sensitivity and precision rate, see Table 1.
B-SMUCE detected 90% of all true segments within the desired margin of error. Fur-
thermore 94% of all detected segments were correct, again, within the desired level of
accuracy. Since we used B-SMUCE with a type I error probability of 5% for including
too many segments, this implies that almost all of the detected jumps were detected
within the required level of accuracy. Furthermore when incorrect, our method usually
detected not more than one spurious segment boundary. We also tried IsoPlotter on
the simulated sequences and got 85.23 detected segments on average. Given an average
number of 27.51 true segments (see Table 1), more than three times the true number of
segments has been detected on average. More detailed results on ISOPLOTTER can
be found in the supplementary material.

B-SMUCE also leads to good results in terms of the FPSLE and FNSLE, see Table 2.
Thus on average, detected segments and true segments match more closely with B-
SMUCE than with the DJS criterion.
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Table 2. False negative sensitive localization errors (FNSLE) and false
positive sensitive localization errors (FPSLE) under scenario 2 for the
Jensen-Shannon divergence method (DJS) and B-SMUCE. Long and
short segments were generated under a power law distribution and the
total sequence length was n = ×106. The results are averages (and stan-
dard errors) over 100 simulation runs. The error rates were standardized
according to the average segment length.

FNSLE FPSLE
DJS 0.27 (0.436) 0.06 (0.103)
B-SMUCE 0.11 (0.164) 0.01 (0.014)
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Figure 3. Logarithm (base 10) of average FNSLE (false negative sen-
sitive localization error), as defined in (14) for DJS (◦) and B-SMUCE
(×). Results are based on simulations under scenario I (segments of
equal length) for several values of σ. The errors encountered with the
multiresolution criterion tend to be smaller. At the simulated segment
lengths, 95% confidence intervals are given as error bars.
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Figure 4. Logarithm (base 10) of average FPSLE, as defined in (15)
for DJS (◦) and B-SMUCE (×). Results are based on simulations under
scenario I (segments of equal length) for several values of σ. The errors
encountered with the multiresolution criterion tend to be smaller. At
the simulated segment lengths, 95% confidence intervals are given as
error bars.
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3.3. Real Data

We applied our segmentation algorithm to three data sets. The first two exam-
ples, λ phage and human MHC complex, have previously been studied in the context
of segmentation algorithms. As a further example, a 10Mb sequence chunk (hg19,
chr1:50000002-60000000) has been arbitrarily chosen from human chromosome 1.

The genome of bacteriophage λ consists of 48502 bases and was one of the first
completely sequenced genomes. Our segmentation led to 6 segments with boundaries
1, 22501, 27829, 33186, 39172, 46367, 48502. Notice that the same number of seg-
ments although with a bit different boundaries has been reported as the outcome of a
segmentation using Hidden Markov Models in Chapter 4 of [9].

We next investigate human genome data from chromosome 6p21.3 and 6p22.1 (hg19,
chr6:29,677,952-33,289,874). This segment harbors the much studied human MHC
complex.

We found a number of segments even larger than that in [19], contradicting once
again the concept of homogeneous isochores. from the UCSC browser for this example.)
We recoded G,C as “1” and A,T as zero, and applied B-SMUCE, and both DJS and
IsoPlotter to this data. With DJS, we found 182 segments. With B-SMUCE and a
type I error probability of α = 0.05, we identified 640 segments. (With α = 0.01, 528
segments were obtained, and choosing α = 0.1 led to 716 segments.)

A natural question is whether the number of 640 or 182 segments is more appro-
priate. To address this issue, notice that the statistical error control associated with
the multiresolution criterion suggests that there are (except for a small error probabil-
ity) at least 640 segments. To check whether this finding is also compatible with the
DJS segmentation, we simulated the segmentation with 640 segments obtained with
B-SMUCE as our null model. We simulated 100 data sets from this null model, and
for 80% of all data sets DJS led to a segmentation with the number of segments at
most 182. With the number of segments taken as test statistic, this amounts to an
estimated p-value of 0.80. Thus the segmentation based on the Jensen-Shannon (DJS)
criterion does not contradict the assumption of 640 segments, whereas the hypothesis
of 182 segments is rejected by the multi-scale criterion underlying B-SMUCE as not
being compatible with the data.

We also applied IsoPlotter 2.4 to the data. With its adaptive detection threshold,
227 segments were identified. The homogeneity test (one-sided F-test) provided with
the IsoPlotter software confirmed for 180 of these 227 segments that they are signif-
icantly more homogeneous than the entire considered DNA sequence. Although this
observation does not give us the number of segments actually present, it seems inter-
esting that the number of sufficiently homogeneous segments found by IsoPlottor is
almost the same as the number of segments identified with the DJS criterion.
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Table 3. Run times (in seconds) of the B-SMUCE algorithm when ap-
plied to sequences of different length taken from the human chromosome
1. The computations were been carried out on a single cluster core with
2.6 Ghz and 8 GB RAM. The results are reported for α = 0.05 and for
bins of lengths 32 and 10. For α = 0.01, very similar run times have
been obtained.

sequence length 105 2·105 5 · 105 106 5 · 106 107

run time bin size 32 0.37 1.0 3.3 9.4 51.9 102.9
run time bin size 10 1.7 4.0 12.3 30.7 169.7 384.0

Finally we considered the region between 50Mb and 60Mb on the human chromosome
1. Here, we tried bins both of size 10 and 32. It turned out that with the finer partition
slightly more segments were detected than with the larger bins of size 32, although the
difference (1096 versus 1041) was not very large. It seems plausible that fine scale
variation can be detected more easily with shorter bins.

To illustrate the run time behavior of the B-SMUCE algorithm with our default
significance threshold α = 0.05, we considered several shorter sequences taken from the
above mentioned 10Mb DNA sequence. Table 3 gives the run times of our algorithm
(in seconds) in dependence of the sequence length.

To give an idea about the run-times of DJS and IsoPlotter, we applied them on the
same sequence pieces. With the standard options (bin size: 32, shortest detectable
domain size: 3008) the run times for the longest sequence (107 bases) were 6.2 sec.
(DJS) and 9.6 sec. (IsoPlotter). Notice however that B-SMUCE is designed to detect
segments of any length, and the shortest segment detected by B-SMUCE in the context
of our run time analysis was 80 bases long. We therefore also recorded the run times
for DJS and IsoPlotter with the minimum segment length changed from 3008 to 80.
For a bin width of 32 and a sequence length of 107, the run time for DJS remained
unchanged, whereas the run time for IsoPlotter increased to 329.1 sec.

For the human genome data considered here, a cross check with the genome anno-
tation revealed that several segments have an interpretation in terms of genes/exons,
repetitive elements or CpG islands. As the GC content may depend on several func-
tional and evolutionary factors, we do not expect simple explanations for many of the
identified segments. Nevertheless, we explore the overlap of the identified segments
with available annotation in the supplement.

4. Conclusion

We introduced a new method (B-SMUCE) for the segmentation of biological se-
quences. The segmentation is with respect to a binary response; here, we have consid-
ered GC content but it might be interesting to apply the method to other applications
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involving binary responses (such as ancestral/derived state of alleles in population ge-
netic applications). Our approach provides precise statistical error control, and will
produce a parsimonious segmentation that does not contain more segments than there
actually are with a user specified preassigned probability of 1−α. A comparison under
the benchmark scenarios taken from [18] suggests that the proposed method B-SMUCE
is more accurate than previously proposed approaches.

Interestingly, the difference to the popular Jensen-Shannon criterion in terms of the
number of detected segments has been particularly large for the human data.
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